Aspect Based Sentiment Analysis (ABSA) is a Natural Language Processing task that aims to identify and extract the sentiment of specific aspects or components of a product or service. ABSA typically involves a multi-step process that begins with identifying the aspects or features of the product or service that are being discussed in the text. This is followed by sentiment analysis, where the sentiment polarity (positive, negative, or neutral) is assigned to each aspect based on the context of the sentence or document. Finally, the results are aggregated to provide an overall sentiment for each aspect.
Aspect-Based Sentiment Analysis (ABSA) focuses on extracting sentiment at a fine-grained aspect level and has been widely applied across real-world domains. However, existing ABSA research relies on coarse-grained categorical labels (e.g., positive, negative), which limits its ability to capture nuanced affective states. To address this limitation, we adopt a dimensional approach that represents sentiment with continuous valence-arousal (VA) scores, enabling fine-grained analysis at both the aspect and sentiment levels. To this end, we introduce DimABSA, the first multilingual, dimensional ABSA resource annotated with both traditional ABSA elements (aspect terms, aspect categories, and opinion terms) and newly introduced VA scores. This resource contains 76,958 aspect instances across 42,590 sentences, spanning six languages and four domains. We further introduce three subtasks that combine VA scores with different ABSA elements, providing a bridge from traditional ABSA to dimensional ABSA. Given that these subtasks involve both categorical and continuous outputs, we propose a new unified metric, continuous F1 (cF1), which incorporates VA prediction error into standard F1. We provide a comprehensive benchmark using both prompted and fine-tuned large language models across all subtasks. Our results show that DimABSA is a challenging benchmark and provides a foundation for advancing multilingual dimensional ABSA.
Fine-grained opinion analysis of text provides a detailed understanding of expressed sentiments, including the addressed entity. Although this level of detail is sound, it requires considerable human effort and substantial cost to annotate opinions in datasets for training models, especially across diverse domains and real-world applications. We explore the feasibility of LLMs as automatic annotators for fine-grained opinion analysis, addressing the shortage of domain-specific labelled datasets. In this work, we use a declarative annotation pipeline. This approach reduces the variability of manual prompt engineering when using LLMs to identify fine-grained opinion spans in text. We also present a novel methodology for an LLM to adjudicate multiple labels and produce final annotations. After trialling the pipeline with models of different sizes for the Aspect Sentiment Triplet Extraction (ASTE) and Aspect-Category-Opinion-Sentiment (ACOS) analysis tasks, we show that LLMs can serve as automatic annotators and adjudicators, achieving high Inter-Annotator Agreement across individual LLM-based annotators. This reduces the cost and human effort needed to create these fine-grained opinion-annotated datasets.
Multimodal aspect-based sentiment analysis (MABSA) aims to identify aspect-level sentiments by jointly modeling textual and visual information, which is essential for fine-grained opinion understanding in social media. Existing approaches mainly rely on discriminative classification with complex multimodal fusion, yet lacking explicit sentiment explainability. In this paper, we reformulate MABSA as a generative and explainable task, proposing a unified framework that simultaneously predicts aspect-level sentiment and generates natural language explanations. Based on multimodal large language models (MLLMs), our approach employs a prompt-based generative paradigm, jointly producing sentiment and explanation. To further enhance aspect-oriented reasoning capabilities, we propose a dependency-syntax-guided sentiment cue strategy. This strategy prunes and textualizes the aspect-centered dependency syntax tree, guiding the model to distinguish different sentiment aspects and enhancing its explainability. To enable explainability, we use MLLMs to construct new datasets with sentiment explanations to fine-tune. Experiments show that our approach not only achieves consistent gains in sentiment classification accuracy, but also produces faithful, aspect-grounded explanations.
This study investigates the use of prompt engineering to enhance large language models (LLMs), specifically GPT-4o-mini and gemini-1.5-flash, in sentiment analysis tasks. It evaluates advanced prompting techniques like few-shot learning, chain-of-thought prompting, and self-consistency against a baseline. Key tasks include sentiment classification, aspect-based sentiment analysis, and detecting subtle nuances such as irony. The research details the theoretical background, datasets, and methods used, assessing performance of LLMs as measured by accuracy, recall, precision, and F1 score. Findings reveal that advanced prompting significantly improves sentiment analysis, with the few-shot approach excelling in GPT-4o-mini and chain-of-thought prompting boosting irony detection in gemini-1.5-flash by up to 46%. Thus, while advanced prompting techniques overall improve performance, the fact that few-shot prompting works best for GPT-4o-mini and chain-of-thought excels in gemini-1.5-flash for irony detection suggests that prompting strategies must be tailored to both the model and the task. This highlights the importance of aligning prompt design with both the LLM's architecture and the semantic complexity of the task.
Customer reviews contain rich signals about product weaknesses and unmet user needs, yet existing analytic methods rarely move beyond descriptive tasks such as sentiment analysis or aspect extraction. While large language models (LLMs) can generate free-form suggestions, their outputs often lack accuracy and depth of reasoning. In this paper, we present a multi-agent, LLM-based framework for prescriptive decision support, which transforms large scale review corpora into actionable business advice. The framework integrates four components: clustering to select representative reviews, generation of advices, iterative evaluation, and feasibility based ranking. This design couples corpus distillation with feedback driven advice refinement to produce outputs that are specific, actionable, and practical. Experiments across three service domains and multiple model families show that our framework consistently outperform single model baselines on actionability, specificity, and non-redundancy, with medium sized models approaching the performance of large model frameworks.
We introduce Arctic-ABSA, a collection of powerful models for real-life aspect-based sentiment analysis (ABSA). Our models are tailored to commercial needs, trained on a large corpus of public data alongside carefully generated synthetic data, resulting in a dataset 20 times larger than SemEval14. We extend typical ABSA models by expanding the number of sentiment classes from the standard three (positive, negative, neutral) to five, adding mixed and unknown classes, while also jointly predicting overall text sentiment and supporting multiple languages. We experiment with reasoning injection by fine-tuning on Chain-of-Thought (CoT) examples and introduce a novel reasoning pretraining technique for encoder-only models that significantly improves downstream fine-tuning and generalization. Our 395M-parameter encoder and 8B-parameter decoder achieve up to 10 percentage points higher accuracy than GPT-4o and Claude 3.5 Sonnet, while setting new state-of-the-art results on the SemEval14 benchmark. A single multilingual model maintains 87-91% accuracy across six languages without degrading English performance. We release ABSA-mix, a large-scale benchmark aggregating 17 public ABSA datasets across 92 domains.
The emergence of large language models (LLMs) has significantly transformed natural language processing (NLP), enabling more generalized models to perform various tasks with minimal training. However, traditional sentiment analysis methods, which focus on individual tasks such as sentiment classification or aspect-based analysis, are not practical for real-world applications that usually require handling multiple tasks. While offering flexibility, LLMs in sentiment-specific tasks often fall short of the required accuracy. Techniques like fine-tuning and evolutionary model merging help integrate models into a unified framework, which can improve the learning performance while reducing computational costs. The use of task meta-data and curriculum learning to optimize learning processes remains underexplored, while sentiment analysis is a critical task in NLP that requires high accuracy and scalability across multiple subtasks. In this study, we propose a hybrid learning model called Multi-stage Evolutionary Model Merging with Meta data driven Curriculum Learning (MEM-MCL), to enhance the sentiment analysis in large language modeling. In particular, expert models are created through instruction tuning for specific sentiment tasks and then merged using evolutionary algorithms to form a unified model. The merging process is optimized with weak data to enhance performance across tasks. The curriculum learning is incorporated to provide a learning sequence based on task difficulty, improving knowledge extraction from LLMs. Experiment results demonstrate that the proposed MEM-MCL model outperforms conventional LLMs in a majority of sentiment analysis tasks, achieving superior results across various subtasks.
Aspect Extraction (AE) is a key task in Aspect-Based Sentiment Analysis (ABSA), yet it remains difficult to apply in low-resource and code-switched contexts like Taglish, a mix of Tagalog and English commonly used in Filipino e-commerce reviews. This paper introduces a comprehensive AE pipeline designed for Taglish, combining rule-based, large language model (LLM)-based, and fine-tuning techniques to address both aspect identification and extraction. A Hierarchical Aspect Framework (HAF) is developed through multi-method topic modeling, along with a dual-mode tagging scheme for explicit and implicit aspects. For aspect identification, four distinct models are evaluated: a Rule-Based system, a Generative LLM (Gemini 2.0 Flash), and two Fine-Tuned Gemma-3 1B models trained on different datasets (Rule-Based vs. LLM-Annotated). Results indicate that the Generative LLM achieved the highest performance across all tasks (Macro F1 0.91), demonstrating superior capability in handling implicit aspects. In contrast, the fine-tuned models exhibited limited performance due to dataset imbalance and architectural capacity constraints. This work contributes a scalable and linguistically adaptive framework for enhancing ABSA in diverse, code-switched environments.
Identifying relevant text spans is important for several downstream tasks in NLP, as it contributes to model explainability. While most span identification approaches rely on relatively smaller pre-trained language models like BERT, a few recent approaches have leveraged the latest generation of Large Language Models (LLMs) for the task. Current work has focused on explicit span identification like Named Entity Recognition (NER), while more subjective span identification with LLMs in tasks like Aspect-based Sentiment Analysis (ABSA) has been underexplored. In this paper, we fill this important gap by presenting an evaluation of the performance of various LLMs on text span identification in three popular tasks, namely sentiment analysis, offensive language identification, and claim verification. We explore several LLM strategies like instruction tuning, in-context learning, and chain of thought. Our results indicate underlying relationships within text aid LLMs in identifying precise text spans.
Understanding sentiment in multimodal conversations is a complex yet crucial challenge toward building emotionally intelligent AI systems. The Multimodal Conversational Aspect-based Sentiment Analysis (MCABSA) Challenge invited participants to tackle two demanding subtasks: (1) extracting a comprehensive sentiment sextuple, including holder, target, aspect, opinion, sentiment, and rationale from multi-speaker dialogues, and (2) detecting sentiment flipping, which detects dynamic sentiment shifts and their underlying triggers. For Subtask-I, in the present paper, we designed a structured prompting pipeline that guided large language models (LLMs) to sequentially extract sentiment components with refined contextual understanding. For Subtask-II, we further leveraged the complementary strengths of three LLMs through ensembling to robustly identify sentiment transitions and their triggers. Our system achieved a 47.38% average score on Subtask-I and a 74.12% exact match F1 on Subtask-II, showing the effectiveness of step-wise refinement and ensemble strategies in rich, multimodal sentiment analysis tasks.